论 BIM 技术在暖通空调工程中的应用

李翩

中建工程设计有限公司 DOI:10.32629/btr.v2i4.2065

[摘 要] 在建筑工程施工建设中,暖通空调工程作为其主要部分,加大其重视力度,可以实现室内环境的优化,同时向人们提供舒适的居住环境。然而,结合我国实际情况发现,暖通空调工程建设仍然存在问题,为了实现节能环保与优化设计工作,可以将BIM 技术合理应用其中,以此保证工程基本功能,提高其整体质量。本文首先对 BIM 技术进行分析,然后对其价值进行阐述,最后研究 BIM 技术在暖通空调工程中的应用和面临挑战。

[关键词] BIM 技术; 暖通空调工程; 应用

暖通空调工程建设中,对于 BIM 技术的应用,除了可以提升设计技术水平之外,还能保证其具有协同性和科学性等特点,其主要是借助某种技术手段进行信息有效切换,充分发挥 BIM 技术信息化特点。和传统暖通空调工程相比,对于BIM 技术的应用,将其实际应用在设计阶段,能够保证整个设计更加标准化,不仅可以促进技术设计的规范化,而且还是迈向市场的重要途径,需要工作人员对其予以重视,以发挥BIM 技术最大价值。

1 BIM 技术的浅析

1.1 概述

在建筑工程施工建设过程中,对 BIM 技术进行应用,比较符合工程持续发展要求,同时对其施工操作予以保障。实际过程中,对于 BIM 技术的应用,首先需要对其技术特点进行了解,例如:信息共享和数据集成等,对于此类应用特点的掌握,有利于对建筑工程进行模拟建设,确保整个施工顺利进行,同时提高其可靠性和科学性。

1.2 特点

BIM 技术的应用特点主要表现为以下几点: (1)数据集成,表现为暖通空调的设计决策工作中,当缩短设计周期时,发生变更的可能性也会随之上升,使其呈现较为显著效果。按照节能环保理念要求,对暖通空调进行设计,应该在保证其基本功能前提下进行,以此减少运行消耗。目前,许多模拟型软件的研发,使软件集成和暖通设计实现有效整合,例如:节能软件,因具有暖通空调能耗准确评估特点,可以保证动态负荷的掌握,所以,和传统设计形式比较,此种方式可以促进系统和环境协调发展。(2)信息共享,属于BIM技术基本特征,具体表现为:建筑工程的辅助设计与施工过程,借助BIM技术信息共享特点,确保各项环节的有效协调,在对施工管理进行辅助监管下,对于此项技术的应用能够对图形准确性进行精确模拟,进而提升整体作业效率,促进建筑工程建设的顺利进行。

2 暖通空调工程中 BIM 技术的应用价值

2.1 解决地下管线问题

结合当前暖通空调工程发现, 因机电管线比较复杂化,

呈现错综复杂状态,多数设计工作的展开,选择二维平面方式进行,很难实现协调进度的目的,最终引发管线碰撞等问题,最终阻碍了暖通空调工程建设。在对 BIM 技术进行分析发现,其主要是在三维模型基础上形成,具有较强关联性,在协同专业下施工,以此解决地下管线问题。在地下管线中,通常涉及较多机电管线,使其层高要求明显提升,暖通空调更是占据地下主要空间,而将 BIM 技术应用在管线系统内,应先对管道展开碰撞检查,如空调水管与喷淋水管等碰撞检查,利用 Revit 三维可视特点,对碰撞资料进行总结,以便于施工过程进行查阅,提升管线的工程质量,降低沟通问题造成的工程变更。对此,BIM技术的应用,可以保证管线施工具有较高合理性,防止出现施工返工等问题。

2.2 提升绘图效率

BIM 技术应用以前,设计人员主要是借助 CAD 制图进行设计,其表达方式与绘制方式比较简单,通过线进行呈现,同时进行文字说明。看书过程还应翻阅图集,如果仅观察平面投影无法全面了解,使信息表达过于局限。因此,BIM 技术是以三维模型为主,对系统点与线、面等进行具体呈现,创建立体模型,使其和暖通空调进行有效结合,可以保证整个系统的直观和立体性。

2.3 系统负荷计算

暖通空调工程主要是为了对室内温度予以控制,以实现 夏季消暑、冬季供暖。在建筑物内,对温度控制主要是借助 暖通空调运行进行,在系统长时间运行后,其运行负荷也会 随之增加,从而呈现冷负荷和热负荷。当进行 BIM 技术的应 用时,通过对暖通空调的计算,对其承受负荷情况进行了解, 以便于工作人员进行相应处理,对暖通空调承受负荷进行精 准计算后,有利于工作人员明确其冷负荷、热负荷位置。

3 BIM 技术在暖通空调工程中的应用

3.1 创建数据处理系统

以数字技术为基础,对 BIM 技术进行应用,主要借助其数据加工和存储等功能进行,首先需要创建暖通空调模型,在将数据录入至数据处理系统后,可以实现信息加工与收集等处理。在进行数据处理系统的建立时,除了应根据暖通空

调实际特点与 BIM 技术原则,还需要设计和施工人员等深入现场进行了解,确保各项数据信息录入的准确性,经过 BIM 技术加工与预算,对信息进行数字化处理,可以实现施工数据存储,同时将其应用在设计和施工等环节。

3.2 对施工系统的调整

在对 BIM 技术进行应用时, 施工企业需要将其与传统技术和施工等进行有效结合, 在对设计意图与施工要求进行全面了解的同时, 结合 BIM 技术施工模型对其施工系统予以调整, 通过 3D 模型和结构树等形式, 对暖通空调施工系统进行全面呈现, 确保决策者进行全面了解, 并对管理人员与施工人员等工作职责予以明确, 以便于约束暖通空调施工。另外, 在进行 BIM 技术应用时, 因其系统具备记录和查询等作用, 不仅可以提高系统功能性, 而且还能使工程建设满足实际需求, 实现暖通空调动态管控。

3.3 强化应用流程控制

建模分析:要求工作人员在 3D 模型基础上深入研究建筑特征,在对其设计予以优化后,利用集成分析等工具进行能耗研究,准确评估暖通空调负载值,以便于获取冷负荷和热负荷数据。风管系统建模:结合风管系统建模,需要工作人员创建 HAVC 系统库,保证其机械功能,利用通风官网和管道布置,以实现三维建模。对于 BIM 技术应用,还能为位置修改提供便利,即系统库中模型视图观察,可以进行自动协调变更,但是应该特别注意:尺寸标注和管道压损计算过程,严格按照工业标准进行,比较符合其施工要求。因风管尺寸较大,通常占据较大立体空间,新风管道可能会延伸至建筑外部,使建筑墙体出现碰撞,所以,BIM 技术的应用可以有效解决此问题。水系统和管道建模以及复核检查等工作,均属于 BIM 技术应用重点,在进行数据汇总处理后,保证各项环节的高效进行,同时为暖通空调建设提供数据支持。

4 BIM 技术在暖通空调中面临挑战

结合 BIM 技术实际应用情况发现,为了充分发挥 BIM 技术的独特价值,需要结合暖通空调工程特点进行,虽然存在较多优势和应用价值,但其面临挑战具体包括:第一,以建筑辅助角度来讲,暖通空调属于建筑工程构成部分,在进行具体设计时,因建筑学属于基础内容,所以,建筑工程往往会将

结构工程和安全消防等作为重点,即 BIM 技术应用于暖通空调设计中,为了避免与其发生碰撞,通常是以暖通工程主动改动为主,主要是因为行业属性造成。第二,我国在进行 BIM 技术运用时,对其应用标准和"虚拟建筑"理念并未得到深入推广,除了部分大型项目使用 BIM 技术之外,其他项目仍然选择 CAD(二维平面模型设计)建筑软件。我国对于 BIM 技术应用研究仍然处在起步阶段,缺少相关规范标准和法律依据,使其应用过程面临不同程度问题。第三,BIM 技术设计环节较为复杂,特别是在进行模型建立中,需要技术人员具备较高技术能力,加上数据庞大特点,通常会花费较长时间进行信息输入,在和 CAD 软件进行比较发现,BIM 技术使用率偏低,缺少相关技术人员进行操作,最终影响其整体应用效果。

综上所述, BIM 技术的应用仍然存在问题, 但是, 因其具有较为理想应用价值, 且在建筑发展中发挥巨大潜力, 所以, 加大 BIM 技术应用力度, 能够促进建筑行业发展。

5 结束语

总而言之,建筑行业整个发展过程,暖通空调工程逐渐呈现复杂化发展趋势,对于其出现问题,如果采取传统方式进行解决,往往表现在效率低、浪费资源等问题。而在 BIM技术持续发展下,将其应用在暖通空调工程中,可以借助其三维建模特点,对资源数据进行实时共享,防止出现不必要重复操作,通过 BIM 模型的创建,对工程成本进行控制,以促进工程建设有序进行,全面提高其建设质量和效率。

[参考文献]

[1]刘昭亮.论暖通空调设计中 BIM 技术的应用[J].山东 工业技术,2017,(22):43.

[2]李磊.论述 BIM 技术在暖通空调中的设计与应用[J]. 四川水泥,2017,(4):91.

[3]刘富勇.BIM 技术在暖通空调设计中的应用分析[J]. 绿色环保建材,2019,(04):107.

[4]吴义安.BIM 技术在暖通空调技术中的应用[J].军民两用技术与产品,2017,(24):241.

[5]郭振彪,郭军政.BIM 技术在暖通空调施工中的应用分析[J].江西建材,2018,(2):72.