盾构衬砌管片的设计模型与反演分析

郭功春 张驰 中铁二院工程集团有限责任公司 DOI:10.32629/btr.v2i2.1833

[摘 要] 盾构衬砌管片的设计多采用荷载—结构法进行计算,结构计算的合理性主要取决于结构模型和作用荷载的准确性。 目前盾构隧道管片设计采用的模型主要有:梁—弹簧模型和梁—接头模型两大类,其中梁—接头模型较为准确,但模拟多以自 编程序实现。本文以通用有限元软件 ANSYS 进行数值模拟,对两类模型进行了对比分析,并采用梁—接头变形不连续模型反 演分析了其作用荷载。

[关键词] 盾构衬砌管片;设计模型;反演分析; ANSYS

前言

盾构隧道的衬砌结构通常由管片、管片间的连接螺栓和 防水填充材料组成,如图1。目前盾构隧道管片设计多采用荷 载一结构法进行计算,主要的模型有梁一弹簧和梁一接头两 大类。其中梁一接头模型可更好地描述管片间的力学特性, 接头处可通过设置弹簧来模拟。根据接头处的力学特性,梁 一接头模型又分为:梁一接头变形连续模型和梁一接头变形 不连续模型,其中接头变形不连续是指接头的应力应变关系 为非线性^[1-2-3]。

图1 盾构隧道衬砌结构与管片

采用荷载一结构法进行计算时,除合理的结构模型外, 盾构隧道的合理设计离不开合理的土压力荷载分布模式,以 及土体响应结构挤压变形而产生的反作用力的分布模式。但 土压力计算与研究多偏重于经验总结,且在盾构管片土压力 实测中,限于目前土压力监测水平和施工影响,使得土压力 的实测值可靠性不高^[4]。随着国内地铁建设的快速发展,隧 道埋深、盾构断面的加大以及复杂特殊地层中施工案例的出 现,现有的管片设计荷载确定方法能否保证管片的安全并不 是确定的,因此发展符合盾构工程实际的管片土压力计算方 法是管片设计中的一个重要研究课题^[1-4]。

针对以上课题,反分析方法提供了较好的解决途径。这 类方法基于现场量测得到的位移量与应力值,这些数据不仅 可作信息化设计与施工的基础数据,而且可对结构的作用荷 载进行反演分析。国内,以同济大学的朱合华(1996)和河海 大学的朱伟、钟小春(2004)为代表的学者在这方面做了很多 有意义的研究^[1-3-4],他们均根据相对易于测定的管片内力 (如轴力、弯矩)实测数据,在梁一接头变形不连续模型的基础上采用最优化方法反演分析管片作用的土压力大小和分布,并服务于实际工程设计。但梁一接头变形不连续模型及优化过程的实现多采用自编计算程序,如朱合华的无导数搜索单纯形法(同济自主开发了曙光正反分析软件)、钟小春的复合形法,这就相对提高了反演分析技术在盾构隧道工程中应用的技术门槛^[34-7]。

1 盾构衬砌管片的设计模型

目前盾构隧道管片设计多采用荷载一结构法进行计算, 主要的模型有梁一弹簧和梁一接头两大类。设计中常用到的 单元有地层弹簧单元、梁单元和接头单元,两类模型根据地 层反作用力、梁单元计算、接头效应的不同又可以划分成多 种类别。

1.1 地层弹簧

梁一弹簧和梁一接头两类模型均采用弹簧考虑地层的 反作用力,这类弹簧可以称之为地层弹簧。关于地层弹簧: (1)地层对衬砌结构的反作用力包括切向反力(即摩擦力)和 径向反力,因此地层弹簧的设置又可分为地层径向弹簧和地 层切向弹簧;(2)地层弹簧响应结构变形可能会产生拉力或 者压力,因此地层弹簧又可分为地层受拉弹簧和地层受压弹 簧。由于地层基本不承受拉力,所以我们需要删除受拉的地 层弹簧,此时的模型称为局部地层弹簧模型。

1.2 梁单元

梁一弹簧和梁一接头模型均多采用梁单元模拟衬砌管 片。梁单元又分为直梁单元和曲梁单元,曲梁单元的计算更为 准确。尽管管片呈曲线状,但在计算分析过程中,如果将单元 长度取得足够小,用直梁单元代替曲梁单元,两者的计算结果 非常接近^[6]。因此本文对衬砌管片的模拟采用直梁单元。

1.3 接头单元

梁一接头模型考虑了管片的接头效应。接头的力学特性 通过在接头处设置三根弹簧来模拟其轴向、剪切和转动效应, 这类弹簧可以称之为接头弹簧。拼装衬砌结构接头部位的变 形是不连续性的,根据梁一接头模型是否描述接头的这种非 线性形态又可将梁一接头模型分为:梁一接头变形连续模型

和梁一接头变形不连续模型。

2 设计模型的计算对比

2.1 设计模型

笔者以通用有限元软件 ANSYS 编写程序对两类模型进行了对比分析,其模型示意见图2图4,模型要点见表1,其中模型 Model-1 和模型 Model-2 属于梁一弹簧模型,模型 Model-3 属于梁一接头模型(可考虑接头变形的非线性)。

设计模型	模型类别	计算要点	选用单元
Model-1	梁一弹簧模型	地层弹簧(径 向、局部)	线性直线梁单元、 线性弹簧单元
Model-2	梁一弹簧模型 (含切向弹簧)	地层弹簧(径 向、切向、局部)	线性直线梁单元、 线性弹簧单元
Model-3	梁一接头模型 (变形不连续)	接头弹簧、 地层弹簧(径 向、切向、局部)	线性直线梁单元、线性弹 簧单元、非线性弹簧单元

表1 计算模型

q1

图 4 设计模型: Model-3

2.2 计算实例

本算例以某地铁7号线工程B区间断面A作为计算断面。 断面A盾构隧道位于砂性土层中,隧道中心距地表19m,地下 水位埋深3m。隧道施工时采用5.44m土压平衡盾构机掘进, 并采用了同步注浆技术。衬砌环由3块标准管片,2块邻接管 片,1块封顶管片组成,接头位置见图5。钢筋混凝土衬砌管片 宽1.2m、厚280mm,外径5.3m,管片混凝土弹性模量Kpa,地基 反力系数Mpa/m。土压力荷载分量,kN/m2,kN/m2,kN/m2,kN/m2。 设计模型Model-3中的管片接头,根据经验选为:轴向刚度kN/m, 剪切刚度kN/m,转动刚度kNm/rad(外侧受拉)、kNm/rad(内侧 受拉)。(注:这里转动刚度只是简单地采用双直线来表达了 内外侧受拉刚度的不同。当梁-接头模型中的结构力学参数要 求严格时,可由管片接头弯曲和剪切试验来获取。根据弯曲试 验数据,非线性弹簧单元可更好地模拟接头处应力和应变的 非线性关系)。

相同计算条件下各模型的计算弯矩见图 6-8, 按破损阶 段截面强度检算的安全系数结果见图 9-图 11。

Copyright © This word is licensed under a Commons Attibution-Non Commercial 4.0 International License.

Building technology research

图 10 设计模型 Model-3: 安全系数

对比本算例计算结果: 三个模型的最大弯矩值和最小 安全系数均位于拱顶,其中又以模型 Model-1 设计最为保 守,有最大弯矩值-73.4kN•m,最小安全系数 1.4。模型 Model-2 有最大弯矩值-47.2kN•m,最小安全系数 4.7。对 比模型 Model-1,模型 Model-2 最大弯矩值减小约 35%,最小 安全系数增大约 240%,可见采用切向弹簧时弯矩减小明显, 建议两类模型只有在注浆回填密实的情况下才可以选用切 向弹簧单元。模型 Model-3 最大弯矩值-50.0kN•m 位于拱 顶,和 Model-2 基本相同。模型 Model-3 衬砌拱部外的弯矩 值,比模型 Model-2 减少约 50%且弯矩分布更为均匀,这与 接头对衬砌刚度的影响有关。模型 Model-3 的最小安全系 数值 3.2 比模型 Model-2 降低约 32%,这说明接头单元对衬砌 结构的安全存在着一定的不利影响。从计算结果中可以看出, 模型 Model-3 体现了接头对衬砌结构的影响,更符合管片的实 际受力变形。

3 作用荷载的反演分析

选用现场易于量测和准确度较高的管片轴力和弯矩作为 反分析样本数据,建立了反分析模型,包括反演分析的计算模 型、优化分析目标函数的建立及反演分析的最优化方法。

3.1 反演分析的计算模型

衬砌管片结构设计模型选用梁一接头变形不连续模型 (Model-3),该模型与与实际衬砌结构受力变形更为接近。作 用在衬砌结构上的土压力荷载分布多假定为线性分布,而实 际土压力分布多为非线性。为了使荷载线性表达式更接近真 实,本文将常规的4分段土压力表达式加大到8分段(上下左 右各分二段),同时摒弃常规方法中关于荷载左右对称的假 定。反演分析的计算模型如图11。

3.2 反演分析的优化求解

盾构法隧道施工中,对管片钢筋的应变(应力)量测具有 较高的精度,和可靠性。因此本文将现场量测的管片轴力和 弯矩用于反演计算,假设未知量为荷载分量中的参数 // 、 // (=1,2,3,4,5,6),建立优化目标函数^[3-4]:

式中: L_1 、 L_2 表示衬砌结构轴力和弯矩的测点数; N_i 、 M_i 为内力计算值 N_i ; M_i 为内力实测值; ω_1 、 ω_2 为相应的加权系数,通常取 $\omega_1 = \omega_2 = 1$ 。

目标函数取得最小值时即表示此时假定的分布土压 力与结构实际受力最为接近,为了使目标函数取得最小值, 这里采用了 ANSYS 提供的零阶优化方法。零阶方法是一种 通用的完善方法,求解不容易陷入局部最小解,适用于绝 大多数的工程问题。零阶方法求解过程有两个关键点:(1) 程序用曲线拟合来建立目标函数和设计变量之间的关系, 其本质是最小二乘法;(2)程序将约束问题(状态变量和设 计变量设置了数值范围)通过对目标函数逼近加罚函数的 方法计入所加约束而换为非约束问题,从而使优化方法更 有效率。

3.3 反演分析实例

此处仍然选用 3.2 节中的工程算例。反演分析计算中的 量测数据,包括管片轴力N和弯矩M均可在现场量测中得到, 钢筋应力计和轴力计埋设于同一位置,图 12 示意了隧道结 构内力量测点的布置。

测占	轴向力/kN	
侧息	实测值	反演值
1	-527	-641
2	-415	-661
3	-519	-745
4	-454	-744
5	-503	-632
6	-322	-570
7	-620	-564
8	-701	-662
9	-610	-688
10	-505	-577

第2卷◆第2期◆版本 1.0◆2019年2月 文章类型:论文|刊号(ISSN): 2630-4651

表 3	实测弯矩与反演弯	矩
	2 · · · · · · · · · · · · · · ·	_

测上	弯矩/(kN・m)		
侧息	实测值	反演值	
1	-31	-9	
2	-20	11	
3	-2	-13	
4	5	9	
5	8	2	
6	-29	-14	
7	2	-2	
8	1	8	
9	19	3	
10	-24	-10	

表 4 设计荷载的初值和反演值

古壯亦旦	设计初值	反演计算值
何轵文里	$/(kN/m^2)$	$/(kN/m^2)$
\mathbf{p}_1	203	183
\mathbf{p}_2	203	112
p_3	203	176
e_1	161	157
e_2	193	139
e ₃	224	59
e_4	161	105
e ₅	193	53
e ₆	224	118
\mathbf{q}_1	210	184
\mathbf{q}_2	210	132
\mathbf{q}_3	210	161

管片和轴向力和弯矩实测值与反演计算值见表 2、表 3。 结果表明:轴力、弯矩的实测值和反演值均表现较为一致性。 其中反演轴力约比实测轴力大 25%,两者在数值大小方面基 本保持一致,但在数值变化趋势上则有一定差异。弯矩的实 测值与反演值则在数值变化趋势方面基本接近,在数值大小 方面却呈现一定差异。

表 3 给出了作用于衬砌结构上荷载分量的设计初值与 反演计算值。荷载变量中除 e3 和 e5 外,反演数值和设计初 值大小差异不明显,但两者分布明显不同。若按设计初值进 行设计有管片最大弯矩值-50kN•m,最小安全系数 3.0;按 反演荷载进行验算有最大弯矩值-24kN•m,最小安全系数 10.6。对比可知本算例初始设计能满足安全要求,但过于保 守。将初始设计荷载和反演荷载分别进行初始计算和反演 计算,两者的计算弯矩和计算安全系数分别见图 13、图 14 和图 15、图 16。

Copyright © This word is licensed under a Commons Attibution-Non Commercial 4.0 International License.

Building technology research

Initial: Bending Moment

图 13 初始计算的弯矩图

图 14 反演计算的弯矩图

图 15 初始计算的安全系数

建筑技术研究

第2卷◆第2期◆版本 1.0◆2019年2月 文章类型:论文|刊号(ISSN): 2630-4651

4 结束语

(1)梁一弹簧模型和梁-接头模型中的切向弹簧对结构 内力影响明显,两类模型建议只在注浆回填密实的情况下选 用切向弹簧单元。

(2)梁一接头模型(考虑非线性)可很好地模拟接头对管 片衬砌的受力变形影响,但该模型多以自编程序实现。本文 以通用有限元软件实现该程序,为盾构衬砌计算提供了一种 简单、实用的方法。

(3)本文在梁一接头变形不连续模型的基础上,反演分析了作用在衬砌结构上的土压力荷载分布和大小。以实际算例说明,反演有效并可用于信息反馈设计。

[参考文献]

[1]朱合华,杨林德,陈清军.盾构隧道管片接头衬砌系统的两种受力设计模型[J].工程力学,1996,(5)395-399.

[2]朱合华,崔茂玉,杨金松.盾构衬砌管片的设计模型与 荷载分布研究[J].岩土工程学报,2000,22(2):190-194.

[3]钟小春,朱伟.盾构衬砌管片土压力反分析研究[J].岩 土力学,2006,(10):1743-1748.

[4]朱伟,钟小春,秦建设.盾构衬砌管片接头力学分析及 双直线刚度模型研究[J].岩土力学,2006,27(12):2154-2158.

[5]朱合华,陶履彬.盾构隧道衬砌结构受力分析的梁— 弹簧系统模型[J].岩土力学,1998,19(2):26-32.

[6]程小虎.梁单元模拟管片接头的盾构衬砌计算模型 [J].地下空间与工程学报,2010.6(5):946-951.

[7]张冬梅,樊振宇,黄宏伟.考虑接头力学特性的盾构隧 道衬砌结构计算方法研究[J].岩土力学,2010,31(8):2546.

[8]周小文,濮家骝,包承纲.盾构隧道衬砌土压力确定方法[J].工程力学,1997,(06)366-370.